Contribution from the Istituto di Chimica Generale ed Inorganica dell'Università di Torino, 10125 Torino, Italy

A Novel Bonding Scheme of an Allene System in a Transition Metal Cluster Complex.

Molecular Structure of

 $\mu_3 - \eta - (1 - \text{Methyl} - 3 - \text{allenyl}) - \mu - \text{hydrido} - triangulo - tris(tricarbonylruthenium)(3Ru - Ru)$

GIULIANA GERVASIO,* DOMENICO OSELLA, and MARIO VALLE

Received July 21, 1975

AIC505186

The molecular structure of μ_3 - η -(1-methyl-3-ethyl-3-allenyl)- μ -hydrido-triangulo-tris(tricarbonylruthenium), HRu₃(CO)₉C₆H₉, has been determined by a single-crystal x-ray analysis. This compound crystallizes in the triclinic system, space group $P\bar{1}$, with two molecules in a unit cell of dimensions a = 9.569 (11) Å, b = 11.231 (7) Å, c = 9.379 (5) Å, $\alpha = 95.09$ (1)°, $\beta = 90.96$ (4)°, and $\gamma = 99.75$ (1)°. A total of 2890 nonzero reflections were collected with an automatic diffractometer; the structure was solved by Patterson and Fourier methods. The hydrogen atom positions were revealed when only low-angle data ($0 < (\sin \theta)/\lambda \le 0.35$ Å⁻¹) were used to calculate difference maps. The atom parameters were refined by least-squares techniques to R = 0.035. The molecule consists of a cluster of three ruthenium atoms each bonded to three carbonyl groups, at the corners of an isosceles triangle, and an allene ligand. The bonding between the two parts of the molecule is attained via two π bonds and one σ bond in a new arrangement found for an allene ligand. The hydridic hydrogen atom symmetrically bridges the longest Ru–Ru bond. A comparison is made with another compound of the same molecular formula obtained by thermal rearrangement of the title compound.

Introduction

Two compounds A and B of molecular formula H-Ru₃(CO)₉C₆H₉ are obtained from the reaction of Ru₃(CO)₁₂ with the isomers of hexadiene.¹ Isomer B is easily obtained by thermal rearrangement of isomer A and its molecular structure is already known.² The lower homologues H-Ru₃(CO)₉C₅H₇ are also the main products of the reaction of Ru₃(CO)₁₂ with pentenes.³ The importance of the molecular structure of the isomer HRu₃(CO)₉C₆H₉-A and the opportunity to make a comparison with HRu₃(CO)₉C₆H₉-B has driven us to carry out an x-ray analysis of the former compound.

This study has revealed the new scheme⁴ of an allene system bonded to the metal cluster via two π bonds and one σ bond.

Experimental Section

The recrystallization of the compound $HRu_3(CO)_9C_6H_9$ -A from *n*-heptane at 0 °C led almost always to yellow tabular (100) polycrystals and the choice of a single crystal suitable for x-ray analysis was very troublesome.

The crystal used (dimensions $0.12 \times 0.29 \times 0.51$ mm) was elongated in the z direction with well-developed {010}, {110}, {110}, and {011} faces. Weissenberg and precession photographs indicated triclinic symmetry. The unit cell parameters, obtained by refining via a least-squares procedure the θ angles of 25 reflections measured on a Philips PW 1100 four-circle automatic diffractometer, are given in Table I, together with other relevant crystal data.

Integrated intensities were collected on the same diffractometer up to a 2θ limit of 50° with graphite-monochromatized Mo K α radiation using an ω -scan technique (scan range 1.80°, scan speed 0.08°/s); 5 s was spent for background measurements on both sides of each peak. A total of 345 reflections, that after a prescan gave $I_{top} - 2I_{top}^{1/2} < I_{bck}$, were considered weak and not measured.

Three standard reflections $(2\bar{1}2)$, $(\bar{1}23)$, and $(13\bar{1})$ were checked every 120 reflections and no significant variations of the intensity were detected. Of the 3113 independent reflections collected, 223 were rejected as being unobserved $(I < 3\sigma(I))$. An absorption correction was applied, using the program GONO9 by Hamilton;⁵ no secondary extinction correction was made, as only a few intense reflections were affected. Atomic scattering factors were taken from Cromer and Waber;⁶ the effects of anomalous dispersion of ruthenium were included in structure factor calculations using Cromer and Liberman's⁷ values for $\Delta f'$ and $\Delta f''$.

<i>a</i> = 9.569 (11) Å	Mol wt 637.45
<i>b</i> = 11.231 (7) Å	Space group P1
c = 9.379 (5) Å	Z = 2
$\alpha = 95.09 (1)^{\circ}$	F(000) = 608
$\beta = 90.96 (4)^{\circ}$	$d_{\text{measd}} = 2.13 \text{ g cm}^{-3}$ (flotation)
$\gamma = 99.75 (1)^{\circ}$	$d_{calcd} = 2.14 \text{ g cm}^{-3}$
$V = 998.95 \text{ Å}^3$	μ (Mo K α) = 22.50 cm ⁻¹

Solution and Refinement of the Structure

A three-dimensional Patterson map was interpretable in terms of three independent heavy-atom positions in the centric space group $P\overline{1}$. Subsequent difference-Fourier syntheses revealed the positions of all the other nonhydrogen atoms. Least-squares refinement⁸ of all positional and anisotropic thermal parameters was considered complete when the shifts of the parameters were smaller than their estimated standard deviations and resulted in the agreement factor R = 0.038 for the 2890 reflections.

A difference-Fourier synthesis revealed at this stage many peaks whose heights ranged from 0.4 to 0.7 e Å⁻³. This map showed promising peaks at likely positions for some hydrogen atoms but was unfortunately marred by a large number of background peaks. With the technique suggested by Ibers and co-workers,⁹ some difference Fourier maps with the $(\sin \theta)/\lambda$ cutoff equal to 0.35, 0.40, and 0.45 Å⁻¹ were calculated. The first had no background peaks and revealed the hydrogen atom positions quite clearly.

The hydrogen atom parameters were refined first using only the low-angle data (667 reflections; $(\sin \theta)/\lambda$ cutoff 0.35 Å⁻¹) and then using all of the data. Continued refinement by least-squares methods, with all atom parameters allowed to vary, led to slightly satisfying thermal parameters for the hydrogen atoms, but the positional parameters gave a good agreement with that expected.

The final R value for the 2890 reflections is 0.035; the weighted value R' is 0.044. The weighting scheme was ($|F_0| = 1.919$ times the absolute scale)

for
$$|F_0| \le 55$$
: $w = 0.01|F_0| + 0.45$

for
$$|F_0| > 55$$
: $w = \frac{467}{0.1|F_0|^2 + 2|F_0| + 55}$

The constants in these expressions were modified during the refinement in order to obtain $\sum \omega \Delta^2$ satisfactorily constant for the amplitudes batched in various groups.

1222 Inorganic Chemistry, Vol. 15, No. 5, 1976

Table II. Final Fractional Coordinates for $HRu_3(CO)_9C_6H_9-A^a$

	x/a	y/b	z/c
Ru1	0.395 09 (5)	0.246 54 (4)	0.250 52 (5)
Ru2	0.135 87 (5)	0.350 76 (4)	0.329 44 (4)
Ru3	0.208 11 (5)	0.305 23 (4)	0.050 83 (4)
C1	0.480 7 (7)	0.180 2 (6)	0.405 5 (8)
C2	0.498 9 (6)	0.407 9 (6)	0.283 0 (8)
C3	0.519 9 (7)	0.202 9 (6)	0.1051(9)
C4	-0.033 4 (7)	0.404 3 (6)	0.280 4 (7)
C5	0.076 0 (8)	0.302 4 (7)	0.511 2 (7)
C6	0.231 1 (7)	0.516 0(7)	0.390 7 (7)
C7	0.041 1 (8)	0.331 7 (6)	-0.044 5 (7)
C8	0.297 0 (8)	0.247 2 (6)	-0.116 5 (7)
C9	0.299 7 (7)	0.470 6 (7)	0.053 2 (7)
C10	-0.149 7 (10)	0.0776(10)	0.2971(12)
C11	-0.077 3 (6)	0.124 0 (7)	0.164 6 (8)
C12	0.071 3 (6)	0.192 2 (5)	0.200 5 (6)
C13	0.187 6 (6)	0.146 4 (5)	0.154 5 (6)
C14	0.263 2 (7)	0.055 8 (5)	0.174 1 (7)
C15	0.220 3 (10)	-0.036 5 (7)	0.281 0 (10)
01	0.525 5 (7)	0.139 7 (5)	0.496 6 (7)
02	0.563 3 (5)	0.501 9 (5)	0.303 5 (7)
O3	0.596 0 (6)	0.174 1 (6)	0.025 5 (7)
04	-0.136 2 (6)	0.432 9 (6)	0.251 1 (6)
05	0.0407(8)	0.270 1 (7)	0.6167(6)
06	0.281 9 (7)	0.613 3 (5)	0.4226(7)
07	-0.061 5 (6)	0.347 1 (6)	-0.094 7 (6)
08	0.349 8 (8)	0.212 9 (6)	-0.215 3 (7)
09	0.357 6 (6)	0.5671(5)	0.057 8 (6)
H_1	0.290 (8)	0.291 (7)	0.369 (9)
H2	-0.230 (11)	0.019 (9)	0.273 (11)
H3	-0.083 (11)	0.004 (9)	0.696 (11)
H4	-0.126 (10)	0.113 (9)	0.380 (11)
H5	-0.129 (8)	0.180 (8)	0.104 (9)
H6	-0.081 (9)	0.046 (7)	0.091 (9)
H7	0.321 (6)	0.025 (5)	0.097 (7)
H8	0.306 (15)	-0.083 (13)	0.300 (16)
H9	0.134 (8)	-0.099 (7)	0.239 (8)
H10	0.186 (8)	0.008(7)	0.363 (9)

^a Figures in parentheses in this and following tables are estimated standard deviations in the last significant figure.

On a final difference-Fourier map some peaks of height 0.4 e $Å^{-3}$ remain, but they have no chemical evidence.

A table of observed and calculated structure factor amplitudes is available.¹⁰ Final fractional coordinates are listed in Table II; anisotropic thermal parameters are shown in Table III. Least-squares planes were calculated by the method of ref 11.

Description of Structure and Discussion

The molecular geometry of $HRu_3(CO)_9C_6H_9$ -A is shown in Figure 1. Interatomic distances are given in Table IV; bond angles, in Table V.

As predicted¹ the molecule consists of an organic ligand and a cluster of three ruthenium atoms at the corners of an isosceles triangle; each ruthenium atom is bonded to three terminal carbonyl groups (two equatorial and one axial).

Two bonds of the cluster are significantly shorter than the Ru-Ru bond of Ru₃(CO)₁₂¹² (2.85 Å); one is longer. They are, however, all within the range of Ru-Ru distances previously reported¹³ in ruthenium clusters and are closely comparable with those found in HRu₃(CO)₉C₆H₅CC₆H₄,^{13a} HRu₃(CO)₉C₁₂H₁₅,^{13b} and HRu₃(CO)₉C₆H₉-B,² in which an allyl fragment is π and σ bonded to the three ruthenium atoms.

Only three adjacent carbon atoms of the organic ligand, C12, C13, and C14, are bonded to the metal cluster. ¹H NMR data¹ and bond distances and angles are in agreement with a bent allenic configuration⁴ C₂H₅—C=C=C=C-CH-CH₃ and with a double π coordination on the Ru1 and Ru3 atoms. The difference between the Ru3-C12, Ru3-C13 bonds and the Ru1-C13, Ru1-C14 bonds suggests a different strength of π bonds, although this is not confirmed by the difference between the C12-C13 and C13-C14 bonds. The central

Table III

(A) Final Temperature	Factors ^a for	r HRu ₃ (CO) ₉ C ₆ H ₉ -A
-----------------------	--------------------------	---

	, .,		1					3.	· · · · ·	0	,, , , , , , , , , , , , , , , ,
	104	β ₁₁	$10^{4}\beta_{22}$	10	${}^{4}\beta_{33}$		10	⁴ β ₁₂	$10^{4}\beta_{1}$	3	$10^{4}\beta_{23}$
Ru	1 78.	7 (5)	59.2 (4) 107	.1 (6	5)	16	.1 (3)	-6.3	3	14.5
									(4)		(4)
Ru:	2 90.	5 (6)	60.3 (4) 64	.4 (:	5)	12	.9 (3)	9.2	2	0.9
									(3)		(3)
Ru:	3 90.4	4 (6)	63.3 (4) 64	.3 (:	5)	21	.7 (3)	11.3	5	12.0
									(4)		(3)
C1	131 ((9)	83 (6)	165	(10)	26	(6)	39 ((8)	25 (6)
C2	93	(7)	86 (6)	151	(9)		19	(6)	-11 ((7)	14 (6)
C3	114	(8)	85 (6)	178	(11)	30	(6)	27 ((8)	27 (7)
C4	126	(9)	83 (6)	98	(7)		28	(6)	16 ((6)	-10(5)
C5	160	(10)	101 (7)	98	(8)		14	(7)	23 ((7)	13 (6)
C6	135 ((9)	95 (7)	113	(8)		26	(6)	10 ((7)	-3 (6)
C7	136 ((9)	105 (7)	83	(7)		36	(6)	7 ((6)	9 (5)
C8	155	(10)	95 (6)	111	(9)		34	(6)	17 ((7)	9 (6)
C9	113	(8)	95 (7)	120	(8)		29	(6)	22 ((6)	30 (6)
C1() 165 ((13)	173 (12)	252	(18) –	69	(10)	58		28
									(12)		(12)
C11	83	(7)	111 (7)	150	(10) -	-3	(6)	3 ((6)	-9(7)
C12	2 94 ((6)	65 (5)	70	(6)		0	(4)	7 ((5)	6 (4)
C13	3 95 ((7)	57 (5)	81	(6)		6	(4)	-3 ((5)	0 (4)
C14	122	(8)	59 (5)	119	(8)		14	(5)	-3 ((6)	0 (5)
C15	5 215	(14)	72 (6)	216	(15))	6	(7)	-17		52 (8)
									(11)		
01	253	(11)	123 (6)	226	(10)	33	(7)	-101 ((9)	59 (7)
02	134	(7)	80 (5)	262	(10) -	17	(4)	-22 ((6)	10 (5)
03	164	(8)	150 (7)	250	(11)	65	(6)	82 ((8)	11 (7)
04	143 ((7)	162 (7)	192	(9)		78	(6)	12 ((6)	14 (6)
05	322	(13)	190 (8)	100	(7)		10	(8)	. 74 ((7)	39 (6)
06	241 ((10)	78 (5)	251	(11) -	12	(6)		(8)	-39 (6)
07	157	(7)	179 (7)	133	(7)		67	(6)	-22 ((6)	29 (6)
08	285	(12)	178 (8)	159	(8)		62	(8)	112 ((8)	-17 (6)
09	179 ((8)	86 (5)	216	(9)	-	-4	(5)	31 ((7)	47 (5)
		В,	Å ²		В	, Ų			1	B, 1	4 ²
	H1	1.4	(1.6)	H5	4.2	(2.0))	H8	12	.2 ((4.2)
	H2	5.9	(2.5)	H6	3.8	(1.9)	H9	5	.3 (1.7)
	H3	10.7	(2.6)	H7	2.6	(1.3)	H10	1	.3 (1.9)
	H4	10.3	(2.6)			•			-		

(B) Root-Mean-Square Displacements (in A) of Atoms along the Principal Axes of Their Vibration Ellipsoids

	$(\overline{U}^2)_{\min}^{1/2}$	$(\overline{U}^2)_{med}^{1/2}$	$(\bar{U}^2)_{\max}^{1/2}$	_
Ru1	0.175	0.195	0.222	
Ru2	0.164	0.195	0.204	
Ru3	0.164	0.185	0.211	
C1	0.192	0.237	0.297	
C2	0.198	0.229	0.262	
C3	0.210	0.228	0.288	
C4 ,	0.183	0.240	0.244	
C5	0.201	0.248	0.278	
C6	0.212	0.246	0.252	
C7	0.191	0.229	0.265	
C8	0.216	0.236	0.269	
C9	0.207	0.216	0.262	
C10	0.189	0.337	0.400	
C11	0.189	0.245	0.287	
C12	0.174	0.189	0.223	
C13	0.177	0.198	0.213	
C14	0.190	0.228	0.239	
C15	0.186	0.293	0.340	
01	0.197	0.294	0.402	
O2	0.196	0.275	0.345	
O3	0.205	0.312	0.360	
O4	0.210	0.291	0.332	
O5	0.178	0.340	0.402	
O6	0.194	0.339	0.356	
O7	0.205	0.273	0.340	
08	0.187	0.342	0.392	
09	0.201	0.298	0.319	

^{*a*} Anisotropic thermal parameters are the β_{ij} coefficients of the formula $\exp(-\sum_{i=1}^{3} \sum_{j=1}^{3} \beta_{ij} h_i h_j)$.

carbon atom C13 of the allenic system is closer, also in this compound, to the metals than the other complexed carbons;⁴

Allene-Transition Metal Cluster Complex

Table IV.	Interatomic Distances (A) for $HRu_3(CO)_9C_6H_9-A$									
D1 D2	2 004 (1)	(a) Ru-Ru	Distances	D., 2 D., 2	2 741 (1)					
Ku1-Ku2	2.994 (1)	Ku1-Ku5	2.700(1)	Ku2-Ku3	2.741 (1)					
(b) Ru-C Distances										
Ru1-C1	1.923 (7)	Ru2-C4	1.885 (7)	Ru3C7	1.898 (7)					
Ru1–C2	1.910 (7)	Ru2C5	1.903 (7)	Ru3-C8	1.915 (7)					
Ru1-C3	1.914 (7)	Ru2-C6	1.956 (7)	Ru3-C9	1.914 (7)					
Ru1C13	2.242 (5)	Ru2-C12	2.058 (5)	Ru3-C12	2.261 (5)					
Ru1C14	2.341 (6)			Ru3-C13	2.089 (5)					
	(c) C-O Distances									
C1O1	1.115 (10)	C4-04	1.122 (9)	C7-07	1.128 (9)					
C2O2	1.128 (9)	C5O5	1.122 (9)	C808	1.132 (10)					
C3-O3	1.118 (10)	C6-06	1.131 (9)	C9-O9	1.127 (9)					
(d) C-C Distances										
C10-C11	1.522 (13)	C12-C13	1.365 (8)	C14-C15	1.511 (10)					
C11-C12	1.514 (9)	C13-C14	1.369 (8)							
		(e) Ru-H	Distances							
Ru1-H1	1.61 (7)	Ru2-H1	1.77 (7)							
		(f) CH I	Distances							
C10-H2	0.9 (1)	C11-H5	1.1 (1)	C15-H8	1.1 (1)					
C10-H3	1.2 (1)	C11-H6	1.1 (1)	C15-H9	1.0 (1)					
C10H4	0.9 (1)	C14-H7	1.0(1)	C15-H10	0.9 (1)					

Figure 1. Projection along c of one molecule on plane ab, showing the atom-labeling system.

the angle of 61° between the coordination planes Ru1–C13–C14 and Ru3–C12–C13 suggests the presence of bent π bonds.

The σ bond Ru2–C12, that completes the coordination between the cluster and the organic ligand, is slightly longer than the Ru–C_{CO} bond (1.913 (7) Å average) and this fact is in agreement with a partial double-bond character as in the compounds HRu₃(CO)₉C₆H₅CC₆H₄, HRu₃(CO)₉C₁₂H₁₅, and HRu₃(CO)₉C₆H₉-B.

The hydridic hydrogen atom lies on the plane of the ruthenium cluster (Table VI), trans to the C3–O3 and C4–O4 carbonyl groups (Table V), and bridges the Ru1–Ru2 bond; this agrees with the lengthening of the Ru1–Ru2 bond and the spreading out of the Ru1–C1–O1 and Ru2–C5–O5 angles (Table V), according to the criteria generally accepted,^{13f} though not always valid.^{13g} The Ru–H bond lengths are similar to the values found by Sheldrick and Yesinowski,^{13g} and the angle Ru–H–Ru is slightly wider.

The Ru3 atom achieves a distorted octahedral coordination with two ruthenium atoms, three carbonyl groups, and one π bond; for Ru1 and Ru2, if we include the hydride but ignore Table V. Bond Angles (deg) for HRu₃(CO)₉C₆H₉-A

	(a) Ru-Ru-Ru	u Angles	
Ru2-Ru1-Ru3 Ru1-Ru2-Ru3	56.7 (1) 57.5 (1)	Ru1-Ru3-Ru2	65.9 (1)
	(b) Ru-Ru-	-C Angles	
Ru2-Ru1-C1	114.1 (2)	Ru3-Ru2-C4	94.3 (2)
Ru2-Ru1-C2	87.0 (2)	Ru3-Ru2-C5	153.1 (2)
Ru2-Ru1-C3	148.5 (2)	Ru3-Ru2-C6	105.9 (2)
Ru2-Ru1-C13	63.3 (1)	Ru3-Ru2-C12	54.0 (2)
Ru2-Ru1-C14	92.9 (2)	Ru1-Ru3-C7	163.1 (2)
Ru3-Ru1-Cl	164.9 (2)	Ru1-Ru3-C8	97.1 (2)
$Ru_3 = Ru_1 = C_2$	94.2(2) 92.1(2)	$Ru_1 = Ru_2 = C_1^2$	94.5(2)
Ru3 = Ru1 = C13	47.9(1)	Ru1-Ru3-C12	52 8 (2)
Ru3-Ru1-C14	78.4(2)	Ru2 - Ru3 - C7	99.7(2)
Ru1-Ru2-C4	151.6 (2)	Ru2-Ru3-C8	162.6 (2)
Ru1-Ru2-C5	109.1 (2)	Ru2-Ru3-C9	89.2 (2)
Ru1-Ru2-C6	97.5 (2)	Ru2-Ru3-C12	47.4 (1)
Ru1-Ru2-C12	72.3 (2)	Ru2-Ru3-C13	70.0 (1)
	(c) C-Ru-	C Angles	
C1-Ru1-C2	97.2 (3)	C5Ru2C6	98.7 (3)
C1-Ru1-C3	97.1 (3)	C5-Ru2-C12	101.1 (3)
C1-Ru1-C13	118.3 (3)	C6-Ru2-C12	159.9 (3)
C1-Ru1-C14	90.9 (3)	C7-Ru3-C8	96.5 (3)
C2-Ru1-C3	92.4 (3)	C7-Ru3-C9	93.9 (3)
C2-Ru1-C13	140.2 (2)	C7-Ru3-C12	89.2 (2)
C2-Ru1-C14	171.1 (3)	C7-Ru3-C13	115.4 (3)
$C_2 = Ru1 = C_{13}$	99.8(3)	C8-Ru3-C9	96.1 (3)
$C_{12} = R_{11} = C_{14}$	83.0(3)	$C_{0} = R_{12} = C_{12}$	127.0(3)
C_{13} -Ru 1 - C_{14}	34.7(2)	Co-Ru3-C13	97.3(3) 136.2(2)
C4 = Ru 2 = C5	93.3(3)	C_{9} -Ru ₃ -C ₁₂	130.2(2) 145 Q(2)
C4-Ru2-C12	89.8 (3)	C12-Ru3-C13	36.3(2)
	(d) P u ₂ C ₂	Du Angles	••••• (=)
Ru2C12Ru3	78.6 (2)	Ru1-C13-Ru3	79.3 (2)
	(e) Ru-C-	C Angles	
Ru2-C12-C11	129.3 (4)	Ru1-C13-C14	76.6 (4)
Ru2-C12-C13	109.3 (4)	Ru3-C13-C12	1286(4)
Ru3-C12-C11	123.2(4)	$Ru_{3} - C_{13} - C_{14}$ $Ru_{1} - C_{14} - C_{13}$	136.0 (4)
Ru1-C13-C12	114.8 (4)	Ru1-C14-C15	120.5(5)
	(f) Ru_C_	Ω Angles	12000 (0)
Ru1-C1-O1	177.5 (1)	Ru2-C6-O6	177.0(1)
Ru1C2O2	178.1 (1)	Ru3-C7-O7	176.5 (1)
Ru1C3O3	176.2 (7)	Ru3-C8-O8	179.9 (1)
Ru2C4O4	178.0(1)	Ru3C9O9	177.4 (1)
Ru2C5O5	177.8 (1)		
610 611 616	(g) C-C-(C Angles	
C10-C11-C12	111.5 (6)	C12-C13-C14	142.3 (6)
CII-CI2-CI3	121.2 (5)	013-014-015	121.9 (0)
D A D A 114	(h) $Ru - Ru$	-H Angles	
Ru2-Ru1-H1	29 (3)	Ru1-Ru2-HI	26 (2)
Ru3-Ru1-H1	86 (3)	Ku3-Ku2-H1	84 (2)
Ru1-H1-Ru2	(i) Ru-H-I 125 (4)	Ru Angles	
Dul C14 H7	(j) Ru-C-	H Angles	
Ku1-C14-II/	105 (4)	TT A	
C1Ru1H1	$(K) \cup Ku = 86 (3)$	-n Angles C4-Ru2-H1	176 (2)
C2-Ru1-H1	85 (3)	C5-Ru2-H1	85 (2)
C3Ru1H1	177 (1)	C6-Ru2-H1	92 (2)
C13-Ru1-H1	80 (3)	C12-Ru2-H1	86 (2)
C14Ru1H1	99 (3)		
C11 C10 HC	(l) C-C-I	H Angles	111 (11)
C11-C10-H2	112(6)	C12-C11-H6	114 (5)
С11-С10-П3 С11-С10-Н4	121 (7)	C15-C14-H7	1121(4)
C10-C11-H5	118 (5)	C14-C15-H8	110 (8)
С10-С11-Н6	105 (5)	C14C15H9	109 (4)
C12-C11-H5	107(5)	C14-C15-H10	116 (5)

the Ru1-Ru2 bond, the coordination is close to octahedral. A comparison between the A and B isomers (Figure 2)

Table VI. Some Relevant Planes^{*a*} for HRu₃(CO)₉C₆H₉-A (a), HRu₃(CO)₉C₆H₉-B (b), and HRu₃(CO)₉C₁₂H₁₅ (c)

Compd		A	toms and d	eviations f	rom planes	3	1997 - 19	A	В	С	D	x ²
a daga daga senaran dalah dan dalam di	Ru1	Ru2	Ru3				and the second	ala da da da ana ang ang ang ang ang ang ang ang an		angaraa salataraaya.nimarin ahaayinidoon		
а								3.64	9.51	-0.61	3.63	
b								2.14	2.54	9.39	3.16	
С								6.50	8.96	4.42	1.44	
	Ru1	Ru2	Ru3	H1								
а	0.01	0.01	-0.01	3.6				3.64	9.51	0.61	3.63	0.16
	C11	C12	C13	C14	C15	Ru1	Ru2					
Ъ	-12.5	8.4	2.6	8.0	2.9	1.4	0.8	-0.72	8.49	4.22	3.31	9.7
с	0.4	6.2	2.4	6.3	-7.6	2.8	0.6	10.34	5.21	8.35	1.04	6.0
	C12	C13	Ru1	Ru2								
а	4.5	4.4	0.2	-0.2				-0.24	-6.66	7.95	0.25	54.3

^a Equations of weighted planes are in the form AX + BY + CZ = D, in fractional coordinates, referred to the cell axes. Distances (A × 10²) of relevant atoms from the planes are given below the respective atoms; $\chi^2 = \Sigma(d/\sigma)^2$ and gives the statistical significance of the planarity.¹⁴

Figure 2. Molecular structures of isomers A and B of HRu₃(CO)₉C₆H₉.

allows us to observe that they differ only in the bonding and the arrangement of the organic ligand with respect to the Ru₃ cluster.

In HRu₃(CO)₉C₆H₉-B, in HRu₃(CO)₉C₁₂H₁₅, and in $HRu_3(CO)_9C_6H_5CC_6H_4$ the atoms Ru1, Ru2, and C11-C15 lie on planes (Table VI) forming angles of 51° with that of Ru₃ cluster, while in HRu₃(CO)₉C₆H₉-A only the atoms Ru1, Ru2, C12, and C13 are roughly on a plane (Table VI) inclined at an angle of 57° with respect to the Ru₃ plane.

In the thermal rearrangement from isomer A to isomer B the shift of a hydrogen atom from C14 to C13 is coupled to the closing of the C14-C13-C12 angle (from 142 to 117°) and the opening of the C12-Ru2-Ru1 angle (from 72 to 84°) with subsequent transfer of C14 in the plane mentioned above and the attainment of a more stable allylic system, with a higher electron delocalization.

Acknowledgment. We thank the "Centro per la Cristallografia Strutturale del C.N.R." of Pavia, Italy, for measurements of intensities on the automatic diffractometer.

Registry No. HRu₃(CO)₉C₆H₉-A, 58151-19-2.

Supplementary Material Available: Listing of structure factor amplitudes (19 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) O. Gambino, M. Valle, S. Aime, and G. A. Vaglio, Inorg. Chim. Acta, 8, 71 (1974).
- (2)M. Evans, M. Hursthouse, E. W. Randall, E. Rosenberg, L. Milone, and M. Valle, J. Chem. Soc., Chem. Commun., 545 (1972).
- M. Castiglioni, L. Milone, D. Osella, G. A. Vaglio, and M. Valle, Inorg. (3) Chem., 15, 394 (1976).
- B. L. Shaw and A. J. Stringer, *Inorg. Chim. Acta, Rev.*, 7, 1 (1973).
 W. C. Hamilton, "World List of Crystallographic Computer Programs", 1966, Program No. 225.
 D. T. Cromer and J. T. Waber, *Acta Crystallogr.*, 18, 104 (1965). (5)
- (6)
- D. T. Cromer and J. Liberman, J. Chem. Phys., 53, 1891 (1970). D. T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970). W. R. Busing, K. O. Martin, and H. A. Levy, "ORFLS, a Fortran Crystallographic Least-Squares Program", Report ORNL TM 305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962. (8)
- (a) S. J. La Placa and J. A. Ibers, J. Am. Chem. Soc., 85, 3501 (1963);
 (b) S. J. La Placa and J. A. Ibers, Acta Crystallogr., 18, 511 (1965); (9)(c) R. J. Doedens, W. T. Robinson, and J. A. Ibers, J. Am. Chem. Soc., 89, 4323 (1967).
- (10) Supplementary material.
- (11) V. Schomaker, J. Waser, R. E. Marsh, and G. Bergman, Acta Crystallogr., 12, 600 (1959).
- (12) R. Mason and A. I. M. Rae, J. Chem. Soc. A, 778 (1968).
- (13) (a) A. W. Parkins, E. O. Fischer, G. Huttner, and D. Regler, Angew. Chem., Int. Ed. Engl., 9, 633 (1970); (b) A. Cox and P. Woodward, J. Chem. Soc. A, 3599 (1971), and references therein; (c) G. Gervasio and G. Ferraris, *Cryst. Struct. Commun.*, **3**, 447 (1973); (d) M. R. Churchill and J. Wormald, *Inorg. Chem.*, **12**, 191 (1973), and references therein; (e) R. Bau, J. C. Burt, S. A. R. Knox, R. M. Laine, R. P. Phillips and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 726 (1973); (f) D. P. W. Vourant of P. J. Dadors, *Isong. Chem.*, **12**, 328 (1973); (f) D. B. W. Yawney and R. J. Doedens, *Inorg. Chem.*, 11, 838 (1972), and references therein; (g) G. M. Sheldrick and J. P. Yesinowski, *J. Chem.* Soc., Dalton Trans., 873 (1975).
 D. W. J. Cruickshank and A. P. Robertson, Acta Crystallogr., 6, 698
- (1953).